(Accredited with 'A+' Grade by NAAC) CENTRE FOR DISTANCE AND ONLINE EDUCATION Annamalainagar - 608002.

Semester Pattern: 2023-24

Second Semester

Instructions to submit Second Semester Assignments

1. Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
2. Assignment topics for each course will be displayed in the A.U, CDOE website (www.audde.in).
3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks = 25 marks).
4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. Write your Enrollment number on the top right corner of all the pages.
5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template / content page will not be accepted.
6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
7. Send all Second semester assignments in one envelope. Send your assignments by Registered Post to The Director, Center for Distance and Online Education, Annamalai University, Annamalai Nagar - 608002.
8. Write in bold letters, "ASSIGNMENTS - SECOND SEMESTER" along with PROGRAMME NAME on the top of the envelope.
9. Assignments received after the last date with late fee will not be evaluated.

Date to Remember
Last date to submit Second semester assignments : 15.04.2024
Last date with late fee of Rs. 300 (three hundred only) : 30.04.2024

Dr. T. SRINIVASAN Director
(S018) - M.Sc. Mathematics - I Yr.
(Second Semester)

018 E 1210 - Advanced Algebra

Assignment Questions

1. Prove that the elements $a \in K$ is algebraic over F, if and only if $F(a)$ is a finite extension of F.
2. If V is a finite extension over f, then for $S, T \in A(V)$ prove that
(a) $r(S T) \leq r(T)$
(b) $r(T S) \leq r(T)$
(c) $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$.
3. For each $i=2, \cdots, k v_{i} \neq 0$ and $V=V_{1} \oplus V_{2} \oplus, \cdots, \oplus V_{R}$, the minimal polynomial of T_{i} is $q_{i}(x)^{i}$.
4. If N is normal and $A N=N A$ then prove that $A N^{*}=N^{*} A$.
5. State and prove Wedderburn's theorem on finite Division Rings.

018E1220 - Measure Theory Assignment Questions

1. Show that the outer measure of an interval is it length.
2. State and prove monotone convergence theorem.
3. If f is a absolutely continuous on $[a, b]$ and $f^{\prime}(x)=0$ almost everywhere then prove that f is a constant.
4. Prove that $(1+a)>e^{a}$ if $a>0$; or $(1-a)>e^{-a}$ if $0<a<1$.
5. State and prove Tannery's theorem.

018E1230 - Differential Geometry
 Assignment Questions

1. (a) Define arc length. Derive the formula for arc length of the space curve and prove that $\left[\bar{r}^{\prime}, \bar{r}^{\prime \prime}, \bar{r}^{\prime \prime \prime}\right]=k^{2} \tau$ with usual notations.
(b) Obtain the curvature and torsion of the curve of interaction of the two surfaces $a x^{2}+b y^{2}+c z^{2}=1$ and $a^{1} x^{2}+b^{1} y^{2}+c^{1} z^{2}=1$ and also find the curvature, torsion and osculating plane of the cubic curve $\bar{r}=\left(u, u^{2}, u^{3}\right)$.
2. (a) State and prove the fundamental Existence theorem for space curves.
(b)State and prove Serret-Frenet formula and also prove that if the radius of curvature is constant then the curve either lies on a sphere or has constant curvature.
3. (a) State and prove Liourille's formula for Geodesic curvature of a curve (k_{g}) and also find E, F, G, H, if $\bar{r}=\left(u, v, u^{2}-v^{2}\right)$.
(b) Define Geodesic. Derive differential equating of a Geodesic and also show that for the anchor ring $\bar{r}=\{(b+a \cos u) \cos v,(b+a \cos u) \sin v, a \sin v\}$, the surface area is $4 \pi^{2} a b$.
4. (a) State and prove Gauss-Bonnet theorem.
(b) State and prove Minding's theorem.
5. (a) Prove that a necessary sufficient condition for a surface to be developable is that its Gaussian curvature is zero and also find the equation to the developable which has the curve $x=6 t, y=3 t^{2}, z=2 t^{3}$, for its edge of regression.
(b) State and prove Monge's Residue theorem and also show that the surface $e^{z} \cdot \cos x=\cos y$ is minimal.

018E1240 - Partial Differential Equations and Tensor Analysis Assignment Questions

1. Find the integral surfaces of the Partial Differential Equation $(x-y) y^{2} p+$ $(y-x) x^{2} q=\left(x^{2}+y^{2}\right) z$ passing through the curve $x z=a^{3}, y=0$.
2. Find the complete integral of $\left(p_{1}+x_{1}\right)^{2}+\left(p_{2}+x_{2}\right)^{2}+\left(p_{3}+x_{3}\right)^{2}=3\left(x_{1}+x_{2}+x_{3}\right)$.
3. Solve $\frac{\partial^{3} u}{\partial x^{3}}+\frac{\partial^{3} u}{\partial y^{3}}+\frac{\partial^{3} u}{\partial z^{3}}-3\left(\frac{\partial^{3}}{\partial x \partial y \partial z}\right)=x^{3}+y^{3}+z^{3}-3 x y z$.
4. Let $\left\{A\left(i_{1}, i_{2}, \cdots, i_{r}\right)\right\}$ be a set of function of the variable x^{i} and let the inner product $A\left(\alpha, i_{2}, \cdots, i_{r}\right) \xi_{i}^{\alpha}$ with an arbitrary vector ξ_{j}, be a tensor of the type $A_{k_{1}, k_{2}, \cdots, k_{p}}^{j_{1}, j_{2}, \cdots, j_{q}}(x)$, then the set $A\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ represents the tensor of the type $A_{k_{1}, k_{2}, \cdots, k_{p}}^{j_{1}, j_{2}, \cdots, j_{q}}(x)$.
5. State and prove Jacobi's theorem.
